

Project Design

Version 4.0

2 May, 2016

©2015-2016 Computer Science Department, Texas Christian University

Project Design v4.0

ii

Revision Signatures

By signing the following document, the team member is acknowledging that he has read the

entire document thoroughly and has verified that the information within this document is, to the

best of his knowledge, accurate, relevant and free of typographical errors.

Name Signature Date

Sushant Ahuja

Cassio Lisandro Caposso Cristovao

Sameep Mohta

Project Design v4.0

iii

Revision History

The following table shows the revisions made to this document.

Version Changes Date

1.0 Initial Draft 15 December, 2015

2.0 Updated Iterations 21 January, 2016

3.0 Updated Development tools,

Minor changes in Database

Designs

20 April, 2016

4.0 Final Minor Changes 2 May, 2016

Project Design v4.0

iv

Table of Contents
Revision Signatures ... ii

Revision History ... iii

1 Introduction .. 1

1.1 Purpose .. 1

1.2 Project Background ... 1

1.3 Section Overview .. 1

2 Design Constraints ... 3

2.1 Assumptions and Dependencies.. 3

2.2 General Constraints ... 3

2.3 Development Environment ... 3

3 System Architecture ... 5

3.1 Apache Hadoop Map/Reduce ... 5

3.2 Apache Spark .. 6

4 Database Designs .. 7

4.1 HDFS .. 7

5 UML Diagrams ... 9

5.1 Sequence Diagrams ... 9

6 Glossary of Terms: ... 10

Appendices ... 11

Appendix A: User Case Model ... 11

Project Design v4.0

1

1 Introduction

1.1 Purpose

This document provides a complete description of the Frog-B-Data system design. Included in

this document are the design constraints, system architecture, user interface design, and Unified

Modelling Language (UML) diagrams, defining their state, class and sequence.

1.2 Project Background

Data now streams from everywhere in our daily lives: phones, credit cards, computers, tablets,

sensor-equipped buildings, cars, buses, trains and the list goes on and on. We have heard so

many people say “There is a Big Data Revolution”. What does that mean? It is not the quantity

of data that is revolutionary. The Big Data revolution is that now we can do something with the

data. The revolution lies in the improved statistical and computational methods which can be

used to make our lives easier, healthier and more comfortable.

Familiar uses of Big Data to a common man include “recommendation engines” used by Netflix

and Amazon, credit card companies, and tech giants like Facebook. In the public realm, there are

all kinds of applications: allocating police resources by predicting where and when crimes are

most likely to occur; finding associations between air quality and health; or using genomic

analysis to speed the breeding of crops like rice for drought resistance. However, this is a very

small fraction of what can be done and what is being done. The potential for doing good is

nowhere greater than in public health and medicine where people are dying everyday just

because data is not being properly shared.

Nowadays, it’s not just about mining data and analyzing results, it is about using data smartly.

The purpose of smart data is to filter out the noise from the Big Data and hold the valuable data

to solve business problems. There are no formulae to convert Big Data into smart data, but if we

understand the clues in the questions around the data and analyze data qualitatively, we can use it

smartly.

1.3 Section Overview

This document includes the following seven sections:

Section 2 – Design Constraints: This section contains the overall description of the project, its

characteristics, functions, operational requirements, its assumptions and dependencies.

Section 3 – System Architecture This section specifies the architecture of the system used by

the project.

Section 4 – Database designs: This section provides with an overall view of the database

structure in the data mining environment called Hadoop Distributed File System (HDFS).

Section 5 – UML Diagrams: This section displays the state, class and sequence diagrams.

Section 6 – Glossary of Terms: This section lists definitions of the terms used in this document.

Project Design v4.0

2

Section 7 – Appendices:

Appendix A – User-Case Model

Project Design v4.0

3

2 Design Constraints

2.1 Assumptions and Dependencies

 We assume that the user will have Linux operating system, preferably Ubuntu 15.04 or

above, with Hadoop and Spark installed and basic knowledge of Java and Python

programming language along with Eclipse Mars IDE.

 We assume that all the Java programming will be done using Apache Maven in both,

Hadoop and Spark. Apache Maven is a key tool for this section of requirements as it

defines the dependencies of any Java Project that the user is working on.

2.2 General Constraints

 Time Constraints:

 End of school year limits research and testing time.

 Data Constraints:

 Very limited availability of ‘real’ Big Data files that can be processed.

 Hardware Constraints:

 Limited number of secondary computers (workers) in manager/worker structure.

 Operating System Constraints:

 Need Linux OS to get the best performance results.

 Root Access Constraints:

 Root Access is not available all the time for security reasons, especially in public

 organizations.

2.3 Development Environment

Frog-B-Data can be used on any Linux environment and Eclipse IDE with the help of the user

guide. It can be used on either independent machines or in a master/slave system structure.

 Development tools

 Hadoop 2.7.1
 Spark 1.5.1
 Java 8.6
 Eclipse Mars 4.5
 Scala 2.11.7
 Python 2.7.9

Project Design v4.0

4

 Supporting tools

 Github
 Slack
 Core FTP 2.2, 1853, 0
 FileZilla

 General Utilities

 Microsoft Office 2013

 Google Drive
 Adobe Photoshop CC 2015 (v2015.0.1)

 Operating Systems

 Ubuntu 15.04

Project Design v4.0

5

3 System Architecture

3.1 Apache Hadoop Map/Reduce

 The above diagram explains the Hadoop Map/Reduce architecture. Map/Reduce works

by breaking the processing into two phases: the map phase and reduce phase.

 Each phase has key-value pairs as input and output, the types of which are chosen by us

depending on the type of job.

 We also specify and write code for two functions: map function and reduce function. We

write code in Java using Eclipse IDE.

 Map Function: Splits the data into independent and filtered independent chunks which are

processed in parallel manner on compute nodes as map tasks.

i) The Hadoop Framework sorts the output of map tasks

ii) We use various map sub-functions available in order to have best sorted and filtered

data from the map function.

 Reduce Function: Takes the input from map function and we perform the summary

operation in this function.

i) We try to use the shortest and fastest route to perform the necessary operation in the

reduce function so that it takes the least amount of time.

ii) We also specify in the main function to store the output of the reduce function in the

HDFS (our database).

Project Design v4.0

6

3.2 Apache Spark

 In Apache Spark, we write the Spark command to start a job from the terminal.
 We also write the command to take the input file from HDFS for the specific job.
 All of this information goes to the Spark driver which decides the number of RDDs

(Resilient Distributed Datasets) to perform the job.
 Spark uses RDDs, which are way faster than what Hadoop uses and support two types of

operations – transformation and action. RDDs do not perform an operation until it is

required (Lazy evaluation). RDDs also have persistence, which means that data can be

recovered in case of crash of the local memory.
 After the final iteration in the last RDD, the output is stored back into the HDFS which

we can access easily from the manager node.

Project Design v4.0

7

4 Database Designs

4.1 HDFS

We use Hadoop Distributed Filesystem (HDFS) as our database for both Hadoop and Spark as

Spark does not have its own Filesystem.

 HDFS is a filesystem designed for storing very large files with streaming data access

patterns. By very large files in this context, we mean the files that are hundreds of

megabytes, gigabytes or terabytes in size.

 Each time we upload files on the HDFS we specify the block size we want for those files

on HDFS. The Block size depends on the type of user and the type of job that we or the

user needs to run. Block size basically means the minimum amount of data that HDFS

can read or write.

 The above diagram shows the namenode and datanodes. Our HDFS cluster has two

types of nodes operating in a manager-worker pattern: namenode(manager) and a

number of datanodes(workers). We can access the jobtracker on the namenode and track

our job step by step to analyze which worker is working on what part of the data.

Without the namenode, we cannot access our database. The datanodes are the

workhorses of the filesystem and are controlled by namenode.

 We use the command line to upload, remove, and create directories and move data on

HDFS. We use the Hadoop filesystem commands to access and make changes to our

database.

Project Design v4.0

8

 Spark also uses HDFS as its filesystem, which means that we have the same filesystem

for both, Hadoop and Spark, but they are on different machines as we have 2 different

machines working as managers of Hadoop and Spark each.

Project Design v4.0

9

5 UML Diagrams

5.1 Sequence Diagrams

Project Design v4.0

10

6 Glossary of Terms:

Apache Hadoop: Apache Hadoop is an open-source software framework written in Java for

distributed storage and distributed processing of very large data sets.

Apache Mahout: An Apache software used to produce free implementations of distributed

scalable machine learning algorithms that help in clustering and classification of data.

Apache Maven: A build automation tool for projects that uses XML to describe the project the

project that is being built and its dependencies on other external modules.

Apache Spark: Apache Spark is an open source cluster computing framework which allows

user programs to load data into a cluster's memory and query it repeatedly.

Big Data: Extremely large data sets that may be analyzed computationally to reveal patterns,

trends, and associations, especially relating to human behavior and interactions

HDFS: Hadoop Distributed File System is a Java based file system that provides scalable and

reliable data storage.

IDE: Integrated Development Environment.

K-means clustering: A way of vector quantization used for cluster analysis in data mining.

Map Reduce: A programming model and an associated implementation for processing and

generating large data sets with a parallel, distributed algorithm on a cluster.

MLlib: Apache Spark’s scalable machine learning library that consists of common learning

algorithms and utilities including classification, clustering, filtering etc.

Root Access: Access to install various software and related items on Linux machines.

Scala: A programming language for general software applications.

XML: XML stands for Extensible Markup Language that defines the protocol for encoding

documents in a format that is both, human and machine-readable.

Apache Hadoop Yarn: YARN (Yet Another Resource Negotiator) is a cluster management

technology. It is characterized as a large-scale, distributed operating system for Big Data

applications.

Project Design v4.0

11

Appendices

Appendix A: User Case Model

Project Design v4.0

12

Install Hadoop and Spark
Actor Installation User and Developer

Description Allows installation user to install Map/Reduce

and Spark environments in the machines and

the developer to write programs for data-

mining purposes.

Goal To successfully install Hadoop and Spark on

the separate systems.

Pre-Conditions Machines should have Linux environments

with appropriate configurations.

Trigger Failure of processing of Big Data files on Java

requires the installation of Hadoop and Spark.

Sequence of Events Allows the users to run the sample programs

on both platforms: IDE and console.

Select Environment
Actor Developer

Description Developer has two choices to process Big Data

Files: Hadoop Map/Reduce and Spark. Spark is

relatively newer and less common data

processing environment.

Goal The main goal is to process Big Data Files with

a great performance in both time and space.

Pre-Conditions The selection of the environment and the

number of nodes to use depends on the size

and formatting of the Big Data file. Thus, the

data file must be ready in order to reach to a

conclusive decision.

Trigger The selection of the environment and stand-

alone/cluster system is triggered by the type of

data file to be processed.

Sequence of Events Once the environment is selected based on the

data file, the appropriate program is developed

and then executed.

Project Design v4.0

13

Program and Test
Actor Developer

Description Appropriate program is written to process the

data file and generate output results.

Goal To generate the required output files after

processing the data file.

Pre-Conditions The environment must be selected in order to

write the program in either Hadoop or Spark.

Trigger This event is triggered when the environment

is selected based on the data file requirements

and an appropriate program is written.

Sequence of Events A jar file is created once the program is written

and is ready for execution.

Create JAR File
Actor Developer

Description The jar file of the JAVA program is created

once the program is written.

Goal The goal is to execute this jar file to process

the Big Data file.

Pre-Conditions The program must be written without any

errors and warnings in order to export it as a jar

file.

Trigger This event is triggered once the program is

written successfully and the data file is ready to

be processed.

Sequence of Events Once the jar file is executed against the data

file, the appropriate output file is generated to

analyze the data processed.

Project Design v4.0

14

Provide Data
Actor Data-Mining User

Description The Data-Mining user provides the data to the

installation user and the developer in order to

process the data so that he can make relevant

decisions based on the output files.

Goal The goal is to be able to process the data

successfully and then analyze it.

Pre-Conditions The data must be big enough to carry out

Map/Reduce and Spark analysis.

Trigger This event is triggered when a large data set

needs to be analyzed and appropriate decisions

need to be made based on the results.

Sequence of Events The data is provided to the installation user and

the developer. The data-mining user then

specifies his requirements based on which the

data shall be processed.

Specify Requirements
Actor Data-Mining User

Description The requirements must be presented to the

installation user and the developer in order to

make decisions regarding the criteria of data

mining, the appropriate environments to use

and to decide the proper output format.

Goal The goal is to be able to process the data and

make decisions out of it based on the

requirements provided.

Pre-Conditions The large data set should be selected

beforehand.

Trigger This event is triggered once the big data set is

selected and the criteria of data mining are

being decided based on the requirements of the

data-mining user.

Sequence of Events Based on the requirements, appropriate output

files are generated.

Project Design v4.0

15

Specify Output Format
Actor Data-Mining User

Description Output files are the most important aspects of

the data mining process. Relevant decisions are

made based on the generated output files.

Goal The goal is to be able to analyze the big data

based on the output files generated.

Pre-Conditions Big data set and the specific requirements must

be decided prior to generating the output files.

Trigger This event is triggered by the processing of the

jar files against the big data sets on

Map/Reduce or Spark.

Sequence of Events The output files generated are used to analyze

the Big Data and make relevant decisions

based on them.

